A Nonlinear Dynamic Model With Confidence Bounds for Hydrodynamic Bearings
نویسندگان
چکیده
In conventional rotordynamic modeling, hydrodynamic bearings are often characterized by a set of linear stiffness and damping coefficients obtained from a first-order Taylor series expansion of bearing reactions. Theoretically, these coefficients are only valid for small amplitude motion about an equilibrium position. In this paper, a nonlinear dynamic model that overcomes the small amplitude assumption in the conventional linear analysis is described. By including higher-order terms in the bearing reaction expansion, nonlinearity in the oil film forces for large amplitude motion can be captured and represented by a set of nonlinear stiffness and damping coefficients. These coefficients are functions of static bearing displacement. A finite difference approach is described and is used to solve for these coefficients. The stated model is applied to a conventional slider bearing and a mechanical smart slider bearing that experiences large variations in load. Error assessment is performed numerically on the higher-order solutions to determine an acceptable displacement bound for the higher order coefficients.
منابع مشابه
Identification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model
In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...
متن کاملPreload Effect on Nonlinear Dynamic Behavior of Aerodynamic Two-Lobe Journal Bearings
This paper presents the effect of preload on nonlinear dynamic behavior of a rigid rotor supported by two-lobe aerodynamic noncircular journal bearing. A finite element method is employed to solve the Reynolds equation in static and dynamical states and the dynamical equations are solved using Runge-Kutta method. To analyze the behavior of the rotor center in the horizontal and vertical directi...
متن کاملDifferential Quadrature Method for the Analysis of Hydrodynamic Thrust Bearings
This paper presents the application of the method of generalized differential quadrature (GDQ) for the analysis of hydrodynamic thrust bearings. GDQ is a simple, efficient, high-order numerical technique and it uses the information on all grid points to approach the derivatives of the unknown function. The effectiveness of the solution technique is verified by comparing the GDQ computed results...
متن کاملExact maximum coverage probabilities of confidence intervals with increasing bounds for Poisson distribution mean
A Poisson distribution is well used as a standard model for analyzing count data. So the Poisson distribution parameter estimation is widely applied in practice. Providing accurate confidence intervals for the discrete distribution parameters is very difficult. So far, many asymptotic confidence intervals for the mean of Poisson distribution is provided. It is known that the coverag...
متن کاملSeismic Performance of seat-type bridges with elastomeric bearings
In Iran and some other countries, elastomer bearings in seat-type bridges are used with no sole/masonry plates and there is no positive connection between superstructure and substructure. Different codes have diverse provisions regarding the coefficient of friction (μ) between elastomer bearing and superstructure/substructure and also the design strength of shear keys (Vsk). Developing a finite...
متن کامل